Lyapunov Exponents of Linear Stochastic Functional Differential Equations Part Ii: Examples and Case Studies

نویسندگان

  • Salah-Eldin A. Mohammed
  • Michael K. R. Scheutzow
چکیده

We give several examples and examine case studies of linear stochastic functional di erential equations. The examples fall into two broad classes: regular and singular, according to whether an underlying stochastic semi ow exists or not. In the singular case, we obtain upper and lower bounds on the maximal exponential growth rate 1 ( ) of the trajectories expressed in terms of the noise variance . Roughly speaking we show that for small , 1 ( ) behaves like 2 2 , while for large , it grows like log . In the regular case, it is shown that a discrete Oseledec spectrum exists, and upper estimates on the top exponent 1 are provided. These estimates are sharp in the sense they reduce to known estimates in the deterministic or non-delay cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Exponents of Linear Stochastic Functional-Differential Equations. II. Examples and Case Studies

We give several examples and examine case studies of linear stochastic functional differential equations. The examples fall into two broad classes: regular and singular, according to whether an underlying stochastic semi-flow exists or not. In the singular case, we obtain upper and lower bounds on the maximal exponential growth rate λ 1 σ of the trajectories expressed in terms of the noise vari...

متن کامل

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

Qr-based Methods for Computing Lyapunov Exponents of Stochastic Differential Equations

Lyapunov exponents (LEs) play a central role in the study of stability properties and asymptotic behavior of dynamical systems. However, explicit formulas for them can be derived for very few systems, therefore numerical methods are required. Such is the case of random dynamical systems described by stochastic differential equations (SDEs), for which there have been reported just a few numerica...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996